Phil's Orderly Physics Curriculum Important Concepts List (POPCICL) - Interactive Edition

[Warning : This list is not intended to be comprehensive, but rather to highlight a few key concepts]

Units

The fundamental units of measurement include : \qquad , \qquad , \qquad , \& electric \qquad
Derived units are created from fundamental units by \qquad or \qquad (math operations)
You \{can/cannot\} add, subtract, or equate physical quantities with different units.

Vectors

Vectors are described by two properties : \qquad and \qquad .

You can change a vector quantity by changing either \qquad or \qquad , or both.

You can describe a vector as a single magnitude and direction, or as \qquad along mutually \qquad axes.
Orthogonal vectors (or vector components) are \qquad .
Independent variables $\{$ do / do not $\}$ directly affect one another.
Vector addition is done graphically by placing the \qquad of one vector at the \qquad of another without \qquad either.
Vector subtraction is done graphically by \qquad the $\{$ first/second $\}$ vector and performing vector addition.
Vector addition is done algebraically by adding the individual \qquad .
A vector dot product between two vectors gives you a \{scalar/vector\} that represents the component of one of the vectors along the direction of the other vector.

Motion (Kinematics)

Displacement is a \{scalar/vector\} quantity; distance is a \{scalar/vector\} quantity.
If you walk in a complete circle, your \qquad is zero, but your \qquad is non-zero (and equal the circumference of the circle you just walked)
Velocity is the rate of change of \qquad with \qquad ; it tells you how quickly your \qquad is changing.
Velocity is a $\{$ scalar/vector $\}$ quantity; speed is a $\{$ scalar/vector $\}$ quantity.
If run completely around the block, your \qquad is zero because your \qquad is zero; but your \qquad is a non-zero, positive, $\{$ scalar/vector $\}$ quantity.
Acceleration is the rate of change of \qquad with \qquad ; it tells you how quickly your \qquad is changing.
The acceleration due to gravity near the surface of the Earth is equal to \qquad
\qquad ; but if if the y-axis is directed upwards, then the acceleration due to gravity is given by $a_{y}=$ \qquad .
Quantities of motion (including \qquad , and) along one orthogonal axis $\{$ do / do not $\}$ affect the quantities of motion along any other orthogonal axis.
Projectile Motion describes the motion of a object that is in motion and subject only to \qquad .
An object in projectile motion (in which we neglect \qquad), will follow a \qquad trajectory.

Forces

Without a \qquad applied, objects continue to move with their current velocity, which could be zero. (Newton's First Law)
An object with no net force on it is said to be in \qquad .
The net force on an object is the \qquad of all the forces acting on it.
A net force on an object acts to \qquad it (Newton's Second Law) Doubling the net force on an object will \qquad the resulting acceleration. For the same applied net force, doubling the mass of the object will \qquad the acceleration.
For every force applied by object A onto object B, there is an \qquad and \qquad force applied by
\qquad onto \qquad (Newton's Third Law)
The force of gravity acts as a force of \qquad between the \qquad of any two masses.
Near the surface of the earth, the force of gravity is (nearly) \qquad and always points \qquad .

The force of gravity scales \qquad ly with the mass : double the mass, and the force will \qquad .
The acceleration due to gravity is \{dependent / independent\} of mass. If we ignore air resistance, a feather and a bowling ball \{will / will not\} fall at the same rate.
The restoring force of a spring depends \qquad ly on the stiffness (k) of the spring and \qquad ly on how much the spring is compressed (or stretched) from its relaxed length.
An ideal spring is \qquad less and has no internal \qquad (it doesn't \qquad just by stretching or compressing)
The \qquad force is the force provided by a surface (ground, tabletop) to keep a massive object from breaking through it.
The normal force of a surface always acts \qquad to that surface.
The normal force is a " \qquad " force. Up to the breaking point, the surface always provides \qquad _ of a counter force to counteract the perpendicular (to the surface) component of other forces pulling/pressing an object against the surface.
is the force provided by a flexible connector (rope, string, wire) to keep an object from breaking away from it.
Tension is always directed \qquad the direction of the connector (rope/string/wire)
Tension is a " \qquad " force. Up to the breaking point, the connector always provides of a counter force to counteract the component of other forces pulling/pressing the object away from the connector.
An ideal rope/string/wire is \qquad less and does not \qquad or \qquad .
In an ideal rope, the magnitude of the \qquad is the same throughout the rope.
An ideal pulley changes the \qquad of the tension force but does not change its \qquad .
The force of friction always acts \{parallel / perependicular\} to the surface (the interface between the two rubbing objects) and in the direction that \qquad the motion or attempted motion.
Static friction acts to oppose \qquad motion. Kinetic friction acts to opposes \qquad motion. The coefficient of static friction is generally $\{$ greater / less $\}$ than the coefficient of kinetic friction for the same interface.
Static friction is a " \qquad " force. Up to the "slipping point", the surface always provides \qquad counter force to counteract the parallel (to the surface) component of other forces attempting to push/pull an object along the surface. Kinetic friction is a \qquad force between two objects in motions.

Direct Stress or Solid Pressure

Solid pressure (a.k.a. Direct Stress) is the applied component of the force) is applied \qquad
per unit \qquad on a material when the force (or a to the surface.
The same force applied across a smaller area will result in a \qquad solid pressure.
When solid pressure exceeds the " \qquad strength" of a material, the material will fracture.

Energy

energy is always conserved. It cannot be created or destroyed; it can only be \qquad

There are many forms of energy. Quantitative accounting of some of these forms of energy is difficult (for the beginning physics student), but \qquad energy is straight-forward to calculate.
The Mechanical Energy of an object/system is the sum of the \qquad Energies and \qquad Energies of that object/system.
Kinetic Energy is the energy of \qquad Kinetic energy scales linearly with \qquad but quadratically with of the moving object. Technically, Kinetic Energy is the energy of [coordinated directional] motion; as opposed to the random motion of molecules that make up heat (thermal energy).
Potential Energy is the energy of \qquad , shape or configuration of multiple objects (as in the case for) or a complex deformable object (as in the case of a ___).
A particle or singular object can only have \qquad energy. \qquad energy requires having two or more interacting objects.
Spring Potential Energy scales linearly with the \qquad , but quadratically with \qquad

Gravitational Potential Energy near the surface of the Earth scales linearly with the \qquad of the object and also linearly with the \qquad of the object. is the transfer of energy. It has the same units as energy.
Once we have defined what to consider as being in our system, \qquad work is a result of forces acting between two objects that are both inside the system. \qquad work is a result of a force acting between an object in the system and an object outside the system.
Internal work can be due to [mechanically] conservative forces or [mechanically] non-conservative forces.
Positive work done by conservative internal forces associates with a \qquad change in potential energy.
[] Conservative Forces (force of gravity, elastic restoring force, and electric [electrostatic] force) conserve \qquad energy. [\qquad] Conservative forces only act to convert one form of energy to another (PE to KE, or KE to PE)
\square] Non-conservative forces, convert \qquad energy to \qquad forms of energy energy includes heat, light, chemical energy, and nuclear energy.
The force of \qquad converts mechanical energy into heat. We can calculate the amount of heat generated by calculating the work done by the force of friction over a certain \qquad .
External work can cause a change in the \qquad energy of a system, the \qquad energy of a system, or a change in the \qquad energy of the system (if, for example, there is \qquad between two objects that are both the system)
An increase in internal energy corresponds to a rise in \qquad .
Power is the rate of change of \qquad with \qquad .

Momentum and Collisions

Linear Momentum is defined as \qquad times \qquad and it is a vector quantity (it has magnitude and direction)
Total Linear Momentum is always conserved for an \qquad system.
A system is an isolated system if there is no transfer of \qquad between objects inside the system and anything outside the system.
is the name given to a change in momentum and has the same units as momentum ($\mathrm{kg} \mathrm{m} / \mathrm{s}$)
Impulse is a measure of the \qquad of momentum from one object to another.
(this is similar to how " \qquad " was the name given to a change or transfer of energy"
Impulse is the integral of an applied force, integrated over \qquad .
(this is similar to how "work" was the integral of an applied force, integrated over \qquad)
Newton's second law can be more generally written as : the net force on an object is equal to the change in that object's \qquad divided by the duration of the impact.
Momentum is distinct from \qquad . Two objects can have the same momentum but have different
\qquad . Or two objects can have the same \qquad but have different momenta.
A collision with a high kinetic energy object is more likely to cause \qquad or \qquad of the target while a collision with a high momentum object is more likely to cause \qquad of the target.
A collision is any interaction between two objects in which \qquad are applied over a relative \qquad .
In a \qquad collision, the colliding objects separate after the collision with their shape undeformed..
In a \qquad collision, both total momentum and kinetic energy are conserved.
In a \qquad collision, the colliding objects stick together after the collision.
In a \qquad collision, total momentum is conserved, but kinetic energy is not conserved.
Two colliding object separating, but ending up deformed after a collision, is an example of an [non-perfect] collision.
For an elastic collision between two objects in one dimension, the \qquad between the two objects is the same before and after the collision, but with a sign change to indicate a change in relative direction. (this is called the \qquad)
For 2D or 3D collisions, the momentum along each \qquad is conserved independently.

Center of Mass

The center of mass of an 1D or 2D object is the location for which the object will be \qquad if supported from underneath at that point.
A 3D object will be balanced if the \qquad is directly above or below the pivot/suspension point.
The center of mass of a system or object is found by taking a \qquad -weighted average of the locations of the particle that make up that system or object.
We may treat an extended object as having all its \qquad concentrated at its \qquad for the purpose of linear (non-rotational) motion and forces.
For an isolated system, the momentum of the center of mass of the system \qquad , regardless of any internal forces or collision that occur within the isolated system.

Circular Motion

Acceleration can be decomposed (broken up) into a \qquad component that is along the direction of motion (direction of the instantaneous velocity vector at any moment) and a \qquad component that is perpendicular to the direction of motion.
Purely tangential acceleration (along the line of motion) only changes the \qquad (\qquad of the velocity) of an object but not its \qquad
Purely centripetal acceleration (perpendicular to the motion) changes the \qquad of an object, but not its speed.
Tangential and centripetal and forces \{are / are not $\}$ new additional forces on a system; they are a \qquad of the existing forces (pushing, pulling, gravity, normal, tension, spring, etc) - decomposing the existing force vectors into "along the motion" and "perpendicular to the motion" components instead of the typical x- and y -components.

Rotational Motion

When a force is directed \qquad with an object's \qquad , it will cause linear acceleration of the object (translational motion) but no rotational motion.
If a force is directed off-center compared to the object's center-of-mass, it can cause \qquad of the object.
Rotation is described relative to some \qquad , such as a fixed pivot point like a hinge.
If an object does not have a fixed pivot point, rotation occurs about its \qquad .
Analogous to the four quantities of motion for linear motion (displacement, velocity, acceleration, duration), rotation motion is described by four quantities of rotational motion : \qquad , \qquad ,
\qquad , and \qquad)
Angle (θ) and angular displacement ($\Delta \theta$) is measured in \qquad $\left(1 \quad=57.3^{\circ}, 2 \pi\right.$ \qquad $=360^{\circ}$)
Angular \qquad (\quad) is measured in radians per second.
Angular \qquad () is measured in radians per second-squared.
The (curved) linear distance traveled by a particle undergoing rotation is called the \qquad (symbol, __) and is given by the product of the angular \qquad () and the \qquad from \qquad (r)

	is the rotational analog to mass. It is a
A moving _non-point-particle) object can have both_-weighted total mass of an object.	
Analogous to translational kinetic energy, rotational kinetic energy is proportional to the object's	
and the square of its	

Torque \& Angular Momentum

Torque is the rotational analog to \qquad . Torque is a distance-weighted- \qquad , and like \qquad is a vector quantity.
Torque is the cross product between the \qquad vector and the \qquad vector.
A vector cross product between two vectors gives you a vector that represents the how \{parallel / perpendicular\} the two vectors are to each other. The cross-product's direction is determined by the \qquad .
For an extended object to be in static equilibrium, two conditions for equilibrium must be met. The sum of the must be zero, and the sum of the \qquad must be zero.
For an object in static equilibrium, you are free to choose the \qquad to be at any point. Choosing it at a point of force application reduces the number of terms in the \qquad equation.
Newton's three laws of motion $\{$ do / do not $\}$ apply for rotational motion.
An object that is not rotating will \qquad , and an object rotating with constant rotational velocity will \qquad unless acted upon by an external torque.
The net torque on an object is proportional to the its \qquad and its angular acceleration. Doubling the net torque on an object will__ the resulting angular acceleration. For the same applied net torque, doubling the \qquad will halve the angular acceleration.
For every torque applied by object A onto object B , there is an \qquad and \qquad torque applied by B onto A . is the rotational analog to linear momentum.
The angular momentum for a particle is equal to the cross product between the \qquad vector and the
\qquad vector. It's direction is determined by the \qquad .
The angular momentum for an extended object is the product of the its \qquad and angular \qquad .
Angular momentum $\{$ is/ is not $\}$ always conserved for an \qquad system. If the moment of inertia of an system is doubled, its angular velocity will be \qquad
Analogous to the alternative formulation of Newton's second law for linear motion; torque can be defined as the time derivative of the \qquad .

