Phil's Orderly Physics Curriculum Important Concepts List (POPCICL) - 1B - Interactive

[Warning : This list is not intended to be comprehensive, but rather to highlight a few key concepts]

Charge & Electric Force

There are only two types of charges : and	
Opposite charges each other. Like charges each other.	
With the exception of, all neutral objects are made of	
A special characteristic of charge is that it is (similar to energy and momentum).	
Charge is The smallest possible isolated charge is	
The unit of charge is the An electron has a charge of	
A(n) is a material in which many of the charges are free to move throughout the material.	
A(n) is a material in which the charges are not free to move throughout the material.	
The electric force between two charged particle is described by Law :	
The electric force between two particles acts along {what direction?}.	
The strength of the electric force falls off <u>{linearly / quadratically}</u> with distance.	
The electric force obeys the principle. The net electric force on a charged particle due to a collection of charges is the of the electric forces between the charged particle and every of charge, taken one pair at a time.	her
Electric Field	
Electric force can be viewed as a two-step process: A source charge produces a(n) that permeters a that permeters a due to that	ates
The electric field at some distance, r, from a charge Q is given by{formula}.	
The electric field is a map of the that would be experienced by a placed at any location.	
The elctric field is a vector quantity with the units of	
The electric field points away from charges and towards charges.	
The electric field is the electric force on a test charge divided by :{formula	
The electric field obeys the principle. The net electric field due a collection of charges is the of the electric fields due to the individual charges considered	
Electric fields are visualized by electric field lines that originate on charges (or at ∞ , for a single isolated charge) and terminate on charges (or at ∞ , for a single isolated charge)	
	ge).
The number of electric field lines that originate/terminate on a particle is proportional to its	ge).
The of electric field lines is proportional to the local magnitude of the electric field	ge).
	ge).
The of electric field lines is proportional to the local magnitude of the electric field The tangent to the electric field lines represents the local of the electric field. Electric field lines can never The direction of the electric force is unique at each point.	ge).
The of electric field lines is proportional to the local magnitude of the electric field The tangent to the electric field lines represents the local of the electric field. Electric field lines can never The direction of the electric force is unique at each point. The electric field above a uniform, infinite plane of charge points	ge).
The of electric field lines is proportional to the local magnitude of the electric field The tangent to the electric field lines represents the local of the electric field. Electric field lines can never The direction of the electric force is unique at each point.	ge).

If a charged particle of mass, m, and charge, q₀, is place in an electric field, E, it will experience an acceleration given by _____ law : _____ {formula}

Electric Flux

In steady state, the electric field is ______ everywhere inside of a solid or hollow conductor

In steady state, any excess charge (positive or negative) on a conductor will reside

In steady state, the electric field immediately outside a conductor is <u>{parallel/perpendicular}</u> to the local surface.

In steady state, excess charge density on the surface of an irregularly-shaped conductor will be ______ at edges, sharp points, or tightly curved corners. The electric field outside the conductor will be ______ around these sharp regions of high charge density.

Electric Potential Energy & Electric Potential

A pair of charges has an electric P.E. that is {directly / inversely} proportional to their {separation / separation-squared}. Potential energy can be thought of as the potential to ______ by converting it from the energy stored in _____. Two unlike charges have the greatest potential energy when they are very <u>{far apart / close together}</u>. Two like charges have the greatest potential energy when they are very {far apart / close together}. Electric potential (voltage) can be thought of as a map of the ______ that would be experienced by a standard test charge if it were placed at any location relative to other charges. Electric potential (voltage) is a {scalar / vector} quantity. The voltage due to multiple charges is the {vector / algebraic} sum of the electric potential (voltage) due to each charge individually. When a test charge moves from a position at one electric potential (voltage) to another, its change in electric potential energy is given by : <u>(formula)</u> The electric potential energy is analogous to ______ in the analogy to gravity. The electric potential (voltage) is analogous to ______ in the analogy to gravity. The electric field is analogous to the ______ in the analogy to gravity : _____(E vs V formula) Equipotential lines indicate regions that are at the same value of ______ - they are analogous to on a geographic contour map. The electric potential nearby a positive point charge is a value and it as you move infinitely far away from the positive point charge. The electric potential nearby a negative point charge is a _______ value and it _______ as you move infinitely far away from the negative point charge.

Capacitors

1
A capacitor is a device that stores energy in the form of a(n) between two separated
Capacitance is a measure of per That is, the capacitance of a capacitor is the amount of that can be stored when a particular is applied across its two conductors (plates).
Capacitance is measured in units of, or more typically micro, nano, or pico
A vacuum-filled capacitor is the simplest example of a capacitor consisting of two plates of area A separated by a gap of width d. Its capacitnce is given by(formula)
There are three ways to increase the capacitance of a parallel plate capacitor : (1) increase the plate, (2) decrease the plate, (3) insert $a(n)$ inside the gap with high, _>1.
Capacitors in parallel must have the same
Capacitors in parallel can be replaced by a parallel equivalent capacitor whose value is given by :(formula)
The {charge on / voltage across} the parallel equivalent equals the sum of those {on/across} the capacitors that it replaces.
Capacitors in series must have the same
Capacitors in series can be replaced by a series equivalent capacitor whose value is given by : <u>(formula)</u>
The <u>{charge on / voltage across}</u> the series equivalent equals the sum of those <u>{on/across}</u> the capacitors that it replaces.
The is a property of an insulator that describe how much it increases the capacitance of a capacitor when inserted between the plates.
The is a property of an insulator that describes how strong of a(n) that it ca withstand before the material "breaks down" and becomes conducting. (a lightning strike occurs across it).
Electrical Current & Resistance
An electric current in a conductor is equal to the amount of that passes through a cross-sectional area of the conductor in a given
The SI unit for current is the which is equal to 1 per
Microscopically, the average velocity of an electron in the direction of the current is called the, which is typically _{very slow / equal to / very fast }_ (compared to) the speed of an electrical signal in a circuit.
Electrical resistance, R, is a measure of how much a circuit element reduces through the circuit. Resistance on an element depends on both and effects.
Electrical resistivity depends only on the and its
Electrical resistivity generally <u>{increase/decreases}</u> with temperature. The is a material-dependent property that describes the rate of change in resistivity with increasing temperature.
Electrical is the inverse of electrical resistivity ($= 1/\rho$).
A is a circuit element that provides electrical resistance in a circuit.
If two or more resistors are connected in a single line with only simple wires (with no junctions) between them, then they are said to be connected in
Two or more resistors in series have an equivalent resistance given by : <u>(formula)</u> , and will be <u>{larger / smaller}</u> than any of the individual resistances.
If two or more resistors are connected so that the front (top) end of each resistor is connected to each other only by wires (through wire junctions) and the back (bottom) end of each resistor is connected to each other only by wires (through wire junctions), then they are said to be connected in
Two or more resistors in parallel havean equivalent resistance given by <u>(formula)</u> , and will be <u>{larger / smaller}</u> than any of the individual resistances.

Batteries and Electric Circuits

	1 • • • • •
Ohm's Law describes the a linear relationship between the,, ,, ,,	_, and in a circuit:
An electrical circuit can be driven by an that provides the "push" of flow as current through the circuit.	on electrical charges so that they
An ideal voltage source is described by an that serves as an "enforcer will provide whatever current is necessary to maintain its rated voltage difference.	of voltage". An ideal erence across it.
A real battery can be visualized an ideal EMF in series with a(n) an includes the effect of an include the effect of an inc	The terminal voltage of a fits
Because of its non-zero internal resistance, the terminal voltage of a real battery will ideal EMF, depending on the(the effective resistance of the circ	
The power associated with a circuit element may be calculated by the relationship :	<u>(formula)</u>
Power has the units of energy per time. The SI unit of Power is Watts. $1 \text{ Watt} = 1$	Joule / sec.
Circuits involving multiple voltage sources can be solved using Rules.	
Kirchhoff's Rule states that at any wire junction, the sum of the That is, the total into the junction must equal to the total	must equal zero.
Kirchhoff's Rule states that around any, the sum of the apply this rule, you must first (arbitrarily) choose a proposed direction for the and (arbitrarily) choose a direction (CW or CCW) for each loop.	must equal zero. To
Kirchhoff'sRule; when the loop runs in the same direction as the curre provides a(n) _{increase/decrease} in voltage while a resistor provides a(voltage. When the loop runs in the opposite direction of the current, then the	n) <u>{increase/decrease}</u> in
An RC circuit combines a resistor and a capacitor in a single circuit and introduces circuit. The characteristic of an RC circuit is given by _ <u>(formula)</u>	
When an EMF is connected to a series RC circuit, the current through the resistor is charge on the capacitor is initially <u>{large/small}</u> (at the very first inscharge on the capacitor as does the voltage across the capacitor; and the resistor goes Eventually, the capacitor reaches a maximum charge the capacitor becomes equal to that of the EMF source, \mathcal{E} , and the current the capacitor becomes equal to that of the EMF source, \mathcal{E} , and the current the capacitor becomes equal to that of the EMF source, \mathcal{E} , and the current the capacitor becomes equal to that of the EMF source, \mathcal{E} , and the current the capacitor becomes equal to that of the EMF source, \mathcal{E} , and the current the capacitor becomes equal to that of the EMF source.	stant). As time progresses, the d as a result, the current through e of $Q = _$, the voltage across
When a previously-charged capacitor is connected in a closed loop to a resistor, the through the resistor. Initially, the current through the resistor is <u>{large/small}</u> the charge on the capacitor and the current through the resistor gradually	, but as time progresses, both
The time-dependent behavior of RC circuits is characterized mathematically by discharging : , where $\tau = $	charging and
Magnetic Forces & Fields	
A magnetic field can be produced by charges, such as the in a	wire.
The magnetic field lines that describe the magnetic field around a straight current-c centered on the wire and that the wire in a direction given	arrying wire form
The current right-hand-rule states that if your point your along along, your fingers will curl in the circulation direction of th	g the wire in the direction of the

The direction of the magnetic field at any point is ______ to the direction of the magnetic field line at that point.

Magnetic Forces & Fields (continued)

In the presence of a magnetic field, a moving charge will experience a magnetic force that is directed to both the magnetic field and the instantaneous velocity vector of the particle. There are two possible directions for this ______ magnetic force (e.g., up/down, left/right, in/out, east/west, north/south). The appropriate choice between these two possible directions is given by the ______

The force right-hand-rule dictates that you fully open your right hand and align your fingers with the direction of the ______ of the charged particle. You then roll your hand so that ______ appears to point straight out of your palm. You should now be able to use your fingertips to "push (rotate)" the ______ into the direction of the ______ by curling your fingers into a closed fist. In this orientation, your outstretched thumb will point in the direction of the magnetic force on a moving

charge. If the actual charge of the particle is negative, simply

A charged particle moving ______ or _____ to a magnetic field will experience no magnetic force. A charged particle moving ______ to a magnetic field will be deflected with the maximal force.

In a uniform magnetic field, B, a charged particle or mass, m, moving with velocity, v, perpendicular to the magnetic field will undergo ______ with a radius, r, found by equating the magnitude of the ______ force to the ______ force required for that particular ______ motion.

The sum of the ______ force and ______ force on a moving charged particle is called the Lorentz force. The electric force is __(dependent/independent)___ of/on the charged particle's velocity, but the magnetic force is ______ (dependent/independent)_____ of/on the charged particle's velocity.

A region that contain both a magnetic field and an electric field oriented perpendicular to each other, can act as a ______ for particles injected ______ to both fields.

A mass spectrometer utilizes a velocity selector followed by the _____ motion of a particle in a magnetic field to separate charged molecules and atoms based on the _____ ratio.

A current-carrying wire in a magnetic field will experience a force on the wire whose magnitude is proportional to four quantities: (i) the ______ (ii) the ______ of the wire exposed to the field, (iii) the magnitude of the ______, and (iv) the sine of the angle between the directions of the ______ and the _____.

We can associate a "magnetic moment" vector, (mu vector) with a current loop which has a magnitude proportional to the ______ and the ______, and whose direction is given by the right-hand-rule. (curl your right fingers in the ______; your outstretched thumb aligns with the _____)

An (infinitely) long, tightly wound spiral of current is called an (ideal) _____. The _____ has a ______.

A loop of current in an external magnetic field can experience a ______ that will cause it to __(what will it do? and in what direction will it do it?) _____(i.e., so that its ______ vector aligns with the

Biot-Savart Law and Ampere's Law

The magnitude of the magnetic field due to a current can be found by two different methods :		law or
Law.		_
	D 1	 0

The Biot-Savart law gives us the ______ at a point, P, some distance, r, from an infinitesimal segment (ds) of a wire carrying a current, I.

We can find the total magnetic field due to any wire by ______ the contributions given by Biot-Savart's law along the

Ampere's law allows us to easily calculate the magnetic field due to current-carrying wires if the wire configuration has sufficient _____, such as a _____, a ____, or a _____.

To apply Ampere's law, draw an imaginary amperian loop that ________ in a way that the magnetic field is known (by symmetry) to be _______ or ______ over different segments of the loop.